INTERNATIONAL JOURNAL OF BIOLOGY AND BIOTECHNOLOGY

Vol. 12, No.1.

Contents

January, 2015

Obituary: Prof. Dr. Muhamamd Jalaluddin: A renowned plant pathologist Muhammad Ahsanuddin and Muhammad Bashiruddin 1

Screening of killer, sensitive and neutral phenotypes in yeasts using certain sensitive Pichia strains Muhammad Mushtaq, Sharfun-Nahar, Muhammad Shahab Alam and M. H. Hashmi 3

Bacterial Community Profiles in Rhizosphere of Paddy Rice based on 16S rRNA Sequence Analysis Attia Sarwar, Imran Sajjid, Rabaila Riaz, Fazal ur Rehman, Shahjahan Shabbir Ahmed, Naeem Shahnwani, Muhammad Naseem, Nazeer Ahmad and Muhammad Mushtaq 11

Antifungal potential of bacterial metabolites: isolation, screening and characterization Mahrurk Zaidi, Sehar Afshan Naz, Nusrat Jabeen, Maryam Shafique and Syed Abdul Subhan 21

Micropropagation of Jatropha curcas L. Saafdar Ali, Ammara Afzal and Muhammad Usman 29

Effect of grinding agents and detergents on the quality of extracted DNA from diverse plant species Saifullah Khan, Naheed Kauser, Hammad Afzal Kayani, Amir Ahmed and Bushra Noman 39

Generating and validating growth-and-obesity roadmaps for the Pakistani children Syed Arif Kamal, Shakeel Ahmed Ansari and Samira Sahar Jamil 47

Histology of infected almond roots (Prunus amygdalus Batsch) seedlings with root-knot nematode (Meloidogyne javanica Treub (Chitwood) and a fungi Plasmidophora brassicae Woronin Nasreen Sultana, Aly Khan, Khalil A. Khanzada, Nasira Khatoon and S. Shahid Shaukat 63

Structure of vasa deferentia and spermatophore in Metapenaeus monoceros (decapoda: penaeidae). Faiz Muhammad, Razia Sultana, Muhammad Shafi, Allah Dino Shah and Noor Ahmed Kalhoro 69

Taxonomic studies of dragonflies from Hyderabad, Sindh Shafique Ur-Rehman, Imran Khatri, Maqsood Anwar Rustamani, Basheer Ahmed Pirzado, Abdul Razzak Rajpar 75

Correlation and heritability studies in pearl millet Muhammad Irshad-ul-Haq, Saeeda Khanum, Muhammad Siddique and Naveed Kamal 81

Cont’d...
GENERATING AND VALIDATING GROWTH-AND-OBESITY ROADMAPS FOR THE PAKISTANI CHILDREN

Syed Arif Kamal*, Shakeel Ahmed Ansari‡ and Samira Sahar Jamil§

SF Growth-and-Imaging Laboratory, the NGDS Pilot Project and Anthromathematics Group, Department of Mathematics, University of Karachi, Karachi 75270, Pakistan; e-mail: profdrakamal@gmail.com

ABSTRACT

‘Growth-and-Obesity Profiles’ of a family gave percentiles of height, mass, optimal mass and status, indicating obesity or wasting as percentage, for all family members. Additionally, for children, target height, current-age-mid-parental height and status, indicating tallness or stunting as percentage, were calculated. To compute parents’ obesity profiles, gender-specific heights and masses were used to interpolate respective percentiles using age-20 values. Either parent was suggested to gain mass, if optimal mass exceeded actual mass. In case, value of optimal mass was lesser than actual mass, father was advised to reduce mass corresponding to that difference, provided the value was less than 10 kilograms, otherwise he should shed off 10 kilograms within the next 6 months. For mothers, currently married or recently divorced/widowed, the recommended suggestion to lose mass was computed by adding 5 kilograms to their mass, to account for possible pregnancy and the associated fetal mass. Up to the age of 30 years, optimal mass was taken as the mass corresponding to height percentile. For individuals older than 30 years, body-mass index (BMI) was considered to be the reference, computed by dividing mass in kilograms by square of height in meters. Optimal mass was determined by multiplying square of height with the ideal BMI value (24 kilogram/meter²). Linear interpolation was employed to compute target-height percentile. Box interpolation was used to determine child’s height/mass percentiles. A comparison of optimal mass with actual mass determined whether the child was wasted or obese. A similar procedure was adopted to compute current-age-mid-parental height. Comparison of child’s height with gender-specific-mid-parental height at current age, indicated whether the child was tall or stunted. When more than one profile (each profile representing a checkup) was available, ‘Growth-and-Obesity Roadmap’ was generated. This roadmap included month-wise recommendations to pick up height and put on or lose mass (weight). These recommendations were generated from the last profile, in such a way that a child was not required to lose more than 10 kilograms within the next 6 months, in order to avoid any adverse health effects from a rapid loss of mass.

Keywords: Optimal mass, wasting, stunting, tallness, estimated-adult BMI, energy channelization

LIST OF ABBREVIATIONS

- cm: centimeter(s) • m: meter(s) • ft: foot(feet) • in: inch(es) • lb: pound(s) • oz: ounce(s) • kg: kilogram(s)
- BLA: Beacon Light Academy, Gulshan-é-Iqbal, Karachi • SF: The Syed Firdous Growth-and-Imaging Laboratory, University of Karachi • SGPP: Sibling Growth Pilot Project — a subproject of the NGDS Pilot Project
- BMI: Body-Mass Index • WHO: World Health Organization • NGDS: National Growth and Developmental Standards for the Pakistani Children
- MP: Mid-Parental

INTRODUCTION

One of the areas, which is of prime concern in the current civilization is the maintenance of proper weight-for-height (Mozaffarain et al., 2011), which acts as deterrent to many diseases (Ludwig, 2007) and ensures a better body image in teenagers (Lee et al., 2013). Life expectancy is reduced by presence of obesity during childhood and adolescence (Fontaine et al., 2003). On the other hand, wasting is shown to be related to, not only, depression at the individual level, but also, suicidal rates at the population level (Barker et al., 1995). Communities, worldwide, have considered it a health priority to measure heights and weights of children to determine prevalence of obesity (Wilkand et al., 2002; Barthe et al., 2001) and maintain updated growth charts (Karlsberg et al., 1999). However, very few studies of this sort have been done in Pakistan. Some recent work by local researchers, e. g., Ramzan et al. (2008), Aziz et al. (2012) and Mushtaq et al. (2012), is worth mentioning.

The WHO Child Growth Standards, released in 2006, depict normal growth under optimal environmental conditions and can be used, universally, to evaluate children. These standards are independent of ethnicity, socio-economic status and feeding type (WHO Multicentre Growth Reference Study Group, 2006a; b). De Onis et al. (2012)

1Main contribution of PhD dissertation of the second author, registered from Department of Physics, University of Karachi. The italic superscripts , , , ..., appearing in the text, represent endnotes listed before references.

*PhD (Neuroscience); MA, Johns Hopkins, Baltimore, MD, United States; MS, Indiana, Bloomington, IN, United States; Founding Project Director, the NGDS Pilot Project • paper mail: Professor and Chairman, Department of Mathematics, University of Karachi, PO Box 8423, Karachi 75270, Sindh, Pakistan • telephone: +92 21 9926 1300 ext. 2293 • homepage: https://www.ngds-ku/kamal • ORCID: 000-0002-1711-4827 • the NGDS Pilot Project URL: https://ngds-ku.org

‡PhD Candidate (Physics); MPhil (Mathematics), University of Karachi; Head, Department of Physics, Government Degree College for Boys and Girls, SRE Majeed, Stadium Road, Karachi 74200

§MPhil Candidate (Mathematics), Research Center for Mathematical Sciences, Federal Urdu University of Arts Sciences and Technologies (FUUAST), Gulshan-é-Iqbal Campus, Karachi 75330
This was the normal range, indicating that the
MP STUNTED > KAMAL -
TALL MP -
a or
-
scrutinized worldwide implementation of the WHO and found that countries have adopted and harmonized best practices in child-growth assessment.

There are issues of defining optimal weight (Cole et al., 2000; Hermanussen and Meigen, 2003) and then devising ways to achieve that (Kamal et al., 2013d). Another problem arises, in the absence of reliable growth charts for third-world countries, where researchers have no option, but to use charts from other populations, like NCHS (Ayatollahi, 1993) and sometimes use statistical methods to adjust these charts to local population (Abolfotouh et al., 1993; Al-Frayh and Bamgboye, 1993). Some preliminary work has been started by various groups (Kamal et al., 2004; Aziz et al., 2012; Mushtaq et al., 2012).

This work describes a method to generate Growth-and-Obesity Roadmaps of the Pakistani children, which is an extension of Growth-and-Obesity Profiles, described in an earlier work (Kamal et al., 2011). The prime contribution of this piece of research is month-wise recommendation to gain height and put on/lose weight based on mathematical calculations. This is very important for the health of a child, as an excess reduction of weight may have adverse effects on the health of a child. On the other hand, if the required amount of weight is not reduced, the child remains obese and all the health risks of obesity apply. Studies have indicated that even a small amount of weight increase in childhood elevates coronary-heart-disease risk factor in adulthood (Baker et al., 2007; Bibbins-Domingo et al., 2007).

MID-PARENTAL HEIGHT, STUNTING AND TALLNESS

For the purpose of generating growth-and-obesity roadmaps, stunting and tallness were defined by taking mid-parental height as reference. To compute adult-mid-parental (target) height of a boy (h_{MP-BOY}) or a girl (h_{MP-GIRL}) from biological father’s height (F) and biological mother’s height (M) using the expressions (1a, b) — all heights are in cm (Chianese, 2005; Karlberg, 1996; Tanner et al., 1970):

\[h_{MP-BOY} = \frac{F + M}{2} + 6.5 \text{ cm} \]
\[h_{MP-GIRL} = \frac{F + M}{2} - 6.5 \text{ cm} \]

Target heights may vary by 5 cm on either side. A child was declared to be stunted, when the individual’s height percentile, \(P(h) \), was lesser than percentile of mid-parental height, \(P(h_{MP}) \), as given in (2a):

\[P(h) < P(h_{MP}) \text{ or } \Delta h = h - h_{CA-MP} < 0, \text{ for a stunted child} \]

For a tall child, the reverse was true, as represented in (2b):

\[P(h) > P(h_{MP}) \text{ or } \Delta h = h - h_{CA-MP} > 0, \text{ for a tall child} \]

where \(h_{CA-MP} \) represents current-age-mid-parental height. Quantitative estimates of tallness and stunting in terms of percentages (Kamal et al., 2011) were given by taking current-age-mid-parental height as reference, listed in equations (3a-c).

If \(STATUS(h) > 1\% \)

\[STATUS(h) = 100 \frac{|h - h_{CA-MP}|}{h_{CA-MP}} \% \text{ STUNTED, if } h < h_{CA-MP} \]

(3a)

(3b)

Else if \(STATUS(h) \leq 1\% \)

\[STATUS(h) = 100 \frac{|h - h_{CA-MP}|}{h_{CA-MP}} \% \text{ TALL, if } h > h_{CA-MP} \]

(3c)

In equation (3c), (−) was taken if \(h < h_{CA-MP} \) and (+) if \(h > h_{CA-MP} \). This was the normal range, indicating that the child had excess (lesser) height compared with current-age-mid-parental height. However, the individual was not considered stunted or tall.

Excessive stunting may be indicative of acute malnutrition, if associated with wasting, or energy-channelization problem, if accompanied by obesity. Excessive tallness may suggest over-nutrition, if associated with obesity, or
energy-channelization problem, if accompanied by wasting (Kamal and Jamil, 2014). The last condition, also, poses health risks, in particular, scoliosis (Kamal et al., 2013c).

Use of absolute value in the formulae for \(STATUS(h) \) poses some mathematical problems. The function, defined by equations (3a, b) is continuous, but not differentiable. Hence, this function cannot be processed using mathematical and computational tools, in particular, when there is a need to compute rates of change. A similar problem arose in discarding the use of mean deviation in favor of standard deviation for the purpose of statistical analysis. A moment-generating function could not be written for the former. This was the basis of selecting sample size large enough so that the assumption that the data are normally distributed is valid. Abandoning modulus sign and admitting both positive (indicating tallness) and negative (indicating stunting) values, would make the above function a true algebraic function and it would become natural to plot it on number line of a graph paper. A definition of algebraic status (pertaining to height) is given in equation (4).

\[
STATUS_{\Delta}^\pm(h) = \frac{100}{h_{CA-MP}} \left(h - h_{CA-MP} \right) \%
\]

A classification of tallness and stunting, suggested by the authors, is given in Figure 1.

BODY-MASS INDEX (BMI)

In 1832, Adolphe Quetelet proposed this index, recognized by peers as ‘Quetelet Index’ (Eknoyan, 2008), renamed later as ‘Body-Mass Index’ (Keys et al., 1972). Apell et al. (2011) discussed physics of body-mass index (BMI). BMI of a person is computed by dividing mass, \(\mu \), of an individual (in kg) by square of height of that person, \(h \) (in m) and is expressed in \(\text{kg/m}^2 \) — cf. equation (5)

\[
BMI = \frac{\mu}{h^2}
\]

Table 1 gives BMI classification for adults. The authors replaced the terminologies ‘underweight’ and ‘overweight’ with ‘wasted’ and ‘obese’ preceded by appropriate adjectives, to indicate severity. For children, BMI range, used for estimating statuses for adults, cannot be used — BMI tables are needed for interpretation (Kamal et al., 2013d).

<table>
<thead>
<tr>
<th>Status</th>
<th>BMI Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessively Wasted</td>
<td>(BMI < 15)</td>
</tr>
<tr>
<td>Severely Wasted</td>
<td>(15 \leq BMI < 16)</td>
</tr>
<tr>
<td>Wasted</td>
<td>(16 \leq BMI < 18.5)</td>
</tr>
<tr>
<td>Normal</td>
<td>(18.5 \leq BMI < 25)</td>
</tr>
<tr>
<td>Obese</td>
<td>(25 \leq BMI < 30)</td>
</tr>
<tr>
<td>Moderately Obese</td>
<td>(30 \leq BMI < 35)</td>
</tr>
<tr>
<td>Severely Obese</td>
<td>(35 \leq BMI < 40)</td>
</tr>
<tr>
<td>Excessively Obese</td>
<td>(BMI \geq 40)</td>
</tr>
</tbody>
</table>

Table 1. WHO classification of body-mass index, applicable to adult population

Fig. 1. Suggested classification and color-coding for status (pertaining to height) expressed as percentage
ESTIMATED-ADULT BMI

Introduced in 2012, equation (6) could be used to compute ‘estimated-adult BMI’ by substituting mass and height of a growing boy or girl by the respective estimated-adult values, \(\mu_{\text{est-adult}} \) and \(h_{\text{est-adult}} \), which provided a snapshot of status of obesity of children, when they reach adulthood — boys at the age of 21 years and girls 19 years (Kamal and Jamil, 2012).

(6) \[
BM_{\text{est-adult}} = \frac{\mu_{\text{est-adult}}}{(h_{\text{est-adult}})^2}
\]

\(BM_{\text{est-adult}} \) could be interpreted on the basis of Table 1.

OPTIMAL MASS (WEIGHT), WASTING AND OBESITY

The term ‘optimal mass’ was, first, mentioned 10-year ago (Kamal et al., 2004), with rigorous definition provided 3-year ago as the mass, \(\mu_{\text{opt}} \), corresponding to height percentile (Kamal et al., 2011). If \(P_{\text{opt}} \) and \(P(h) \) represented percentiles of optimal mass and height, respectively, then these percentiles were related by equation (7)

(7) \[
P_{\text{opt}} = P(h)
\]

For the purpose of generating growth-and-obesity roadmaps, if the mass of an individual was lesser than optimal mass, then the incumbent was wasted; whereas if it was more than optimal mass, it represented obesity, according to the inequalities (8a, b)

(8a) \[
\Delta \mu = \mu - \mu_{\text{opt}} < 0 \text{ or } P(\mu) < P(h), \text{ for a wasted child}
\]

(8b) \[
\Delta \mu = \mu - \mu_{\text{opt}} > 0 \text{ or } P(\mu) > P(h), \text{ for an obese child}
\]

Quantitative estimates of wasting and obesity were given in equation (9a, b) by taking optimal mass as reference (Kamal et al., 2011).

If \(STATUS(\mu) > 1\% \)

(9a) \[
STATUS(\mu) = 100 \| \frac{\mu - \mu_{\text{opt}}}{\mu_{\text{opt}}} \| \% \text{ WASTED, if } \mu < \mu_{\text{opt}}
\]

(9b) \[
STATUS(\mu) = 100 \| \frac{\mu - \mu_{\text{opt}}}{\mu_{\text{opt}}} \| \% \text{ OBSE, if } \mu > \mu_{\text{opt}}
\]

Else if \(STATUS(\mu) \leq 1\% \)

(9c) \[
STATUS(\mu) = 100 \| \frac{\mu - \mu_{\text{opt}}}{\mu_{\text{opt}}} \| \% (\bar{\mu})
\]

In equation (9c), (−) was taken if \(\mu < \mu_{\text{opt}} \) and (+) if \(\mu > \mu_{\text{opt}} \). This was the normal range, indicating that the child had excess (lesser) mass compared with optimal mass. However, the individual was not considered wasted or obese.

Both excessive obesity and wasting are associated with health risks. Excessive obesity may be indicative of over-nutrition, if associated with tallness, or energy-channelization problem, if accompanied by stunting. Childhood obesity has been declared epidemic by the US First Lady, Michelle Obama (S. Z. Yanovski and J. A. Yanovski, 2011). According to Ludwig (2007), obesity in children is associated with cardiovascular, gastrointestinal, musculoskeletal, neurological, psychosocial, pulmonary and renal problems. He classified into 4 phases the long-term effects of obesity epidemic. Phase I, from 1970 till 2007, exhibited increasing cases of obesity due to lack of awareness of its adverse effects. Phase II emerged in the following years with serious medical conditions, such as type-II diabetes, fatty liver and many psychosocial problems. In Phase III, the situation, further, worsened and life-threatening diseases, like coronary heart disease, kidney failure etc. increased mortality rate and shortened life expectancy of American population. In Phase IV, the prevalence of weight-related diseases would accelerate more resulting in non-genetic influences in the offspring, if this trend continues. In an e-communication to one of our group members, Ludwig explained: “Phase IV of the epidemic would develop slowing over time, as obese children grow up and give birth to the next generation of children” (Kamal and Jamil, 2012). Excessive wasting may be indicative of under-
4th-Degree Obese & $STATUS_{\pm}(\mu) \geq +30\%$

3rd-Degree Obese & $20\% \leq STATUS_{\pm}(\mu) < +30\%$

2nd-Degree Obese & $10\% \leq STATUS_{\pm}(\mu) < +20\%$

1st-Degree Obese & $1\% \leq STATUS_{\pm}(\mu) < +10\%$

Normal & $-1\% \leq STATUS_{\pm}(\mu) < +1\%$

1st-Degree Wasted & $-10\% \leq STATUS_{\pm}(\mu) < -1\%$

2nd-Degree Wasted & $-20\% \leq STATUS_{\pm}(\mu) < -10\%$

3rd-Degree Wasted & $-30\% \leq STATUS_{\pm}(\mu) < -20\%$

4th-Degree Wasted & $STATUS_{\pm}(\mu) < -30\%$

Fig. 2. Suggested classification and color-coding for status (pertaining-to-mass) expressed as percentage

The arguments, which motivated the authors to introduce $STATUS_{\pm}(h)$ are, equally, applicable to define algebraic status (pertaining-to-mass), admitting both positive (indicating obesity) and negative (indicating wasting) values, through equation (10)

\[
STATUS_{\pm}(\mu) = 100 \frac{\mu - \mu_{\text{opt}}}{\mu_{\text{opt}}} \%
\]

A classification of obesity and wasting, suggested by the authors, is given in Figure 2.

THE NGDS PILOT PROJECT

In 1998, the NGDS Pilot Project https://ngds-ku.org was launched after ‘Institutional Review Process’, which incorporated existing ethical and human-right standards applicable in Pakistan (Kamal et al., 2002; 2004). ‘Opt-in policy’ was implemented by requiring the parents to complete and sign ‘Informed Consent Form’. A subproject of the NGDS Pilot Project, named as SGPP (Sibling Growth Pilot Project), served local families, who reported to SF Growth-and-Imaging Laboratory for detailed checkup after filling out ‘SGPP Participation Form’.

Heights, h, and masses of families were measured by reproducible anthropometrists (Kamal and Razzaq, 2014) to accuracies of 0.01 cm and 0.01 kg, in the morning hours, as per protocols suggested elsewhere (Kamal, 2006, 2010). Parents were measured wearing minimal indoor clothing and the children were required to undress totally except briefs or panties (cf. Figure 3). Everyone removed shoes and socks as well as accessories for
measurements. A suitable clothing correction was subtracted from ‘gross mass’ (mass, with the subject wearing indoor clothing) to obtain ‘net mass’ (mass without any clothing on), μ, for father and mother. Since, the children had to be in underwear for their checkups, barefoot, stripped-to-waist, their recorded masses were, almost, equal to net masses and used without any clothing correction.

For measuring height (stature), the subject was aligned to mounted (engineering) tape and advised to keep hands straight and open, feet together, palms touching thighs and holding breath (attention position). Holding a pencil at eye level, head was straightened. For measuring mass, the subject was asked to stand in the center of beam scale with empty hands and feet separated, looking straight and holding breath (stand-at-ease position). The anthropometrist recorded height to nearest 0.01 cm and mass to nearest 0.01 kg (Kamal, 2010). Equipments were calibrated using a standard 100-cm ruler and a standard 2-kg mass. Zero errors were determined before starting each session and subtracted from the measured values.

A REVIEW OF GROWTH-AND-OBESITY MODELS

Correlation Model

This model was presented by Arglye, Seheult and Wooff 7-year ago (Arglye et al., 2008) to statistically process child-growth data.

Main Contributions

- Fitted and modeled serial correlation structure of growth measurements of children.
- Eliminated the need of monitoring growth at specific ages.

ICP Model

The ICP (Infancy-Childhood-Puberty) model is a time series, representing analysis of the longitudinal development of human body (Karlberg, 1987; 1996). Height of child (on y axis) is plotted as a function of age (on x axis). Moment of birth is taken as zero time, whereas zero height is the height at conception. Term of baby is x intercept and birth length is y intercept. Growth curve is split into 3 separate and partially superimposed components, viz. infancy, childhood and puberty. Infantile period begins before birth and continues up to 3 or 4 years of age. This period may be interpreted as postnatal continuation of ‘fetal growth’. This model has been described in detail in one of our previous works (Kamal and Jamil, 2012).

Main Contributions

- Indicated that height curve is continuous, but not smooth, making height velocity undefined during phase transitions, i.e., infancy-to-childhood phase and childhood-to-puberty phase.
- Gave mathematical expressions to represent height trajectory in infancy, childhood and puberty regions.
- Identified a decrease in growth (height) velocity as the child’s age approaches the terminal part of a certain region and about to experience phase transition.

KFA Model

KFA (Kamal-Firdous-Alam) model assumed that height and mass trajectories were, approximately, linear if the measurements were performed 6-month apart — assumption valid for most of the ICP curve (Kamal et al., 2002; 2004). Exceptions were the regions characterized by a rapid growth-rate change — infancy-to-childhood phase and childhood-to-puberty phase. In other regions, linear interpolation was used to compute height at some age grid. Target heights for boys and girls were determined and backward extrapolation performed to evaluate desired heights at reference age grids.

Main Contributions

- Compared desired height (based on mid-parental height, extrapolated backward at a certain age grid, which the child has just passed) with interpolated-actual heights to determine if a child was tall or stunted.
- Employed a similar procedure for mass to classify a child as obese or wasted.
- Predicted height and mass 6-month down the road.

KJR Model

KJR (Kamal-Jamil-Razzaq) model (Kamal et al., 2014b) was an extension of KFA model (Kamal et al., 2004). This model generated ‘Growth-and-Obesity Moving-Profiles’ of children. When these moving profiles were generated for real-time data, these were termed as ‘roadmaps’ (Kamal et al., 2013e; 2014a). Numerical examples of
some of the important concepts introduced during the last 10 years are given elsewhere (Kamal, 2014; Kamal and Jamil, 2014).

Main Contributions

- Replaced the concepts of growth (height) velocity and rate of mass gain (loss) by height- and mass-percentile trajectories.
- Introduced the notions of pseudo-gain of mass, pseudo-gain of height, energy-channelization problem (stunting with obesity, wasting with tallness) — cf. Figure 4.

KJK Model

KJK (Kamal-Jamil-Khan) model (Kamal et al., 2011) gave procedures to generate ‘Growth-and-Obesity Profiles’ of a family, which consisted of Obesity Profiles of father and mother as well as Growth-and-Obesity Profile of each child based on a single check up.

Main Contributions

- ‘Estimated-adult BMI’ was introduced, which gave a rough estimate of obesity or stunting, when the child becomes a fully-grown adult.
- Discussed the implications of childhood marriages on the health of mother and her children from psychological and physiological perspectives, taking into consideration points of view of various religious scholars as well as sociological theories.
- Early marriages have, also, been scrutinized from the perspectives of physics, biology and control theory.
- This work tried to elaborate difference between ‘age of puberty’ and ‘age of marriage’.
GROWTH-AND-OBESITY ROADMAPS

Model Development

Dates of Birth and Checkups: The first step in generating ‘Growth-and-Obesity Roadmaps’ of a family was conversion of dates of birth and dates of measurement in fractional form and finding difference to compute age. Dates of birth and checkup were recorded as YYYY-MM-DD — year in four digits-month in two digits; ages as YY-MM-DD (year in two digits). Appendix A of (Kamal et al., 2011) gave the detailed procedure.

Parents’ Obesity Profiles: To compute Parents’ Obesity Profiles, heights and masses, obtained from extended-gender-specific tables https://www.ngds-ku.org/Papers/J34/Additional_File_3.pdf were used to interpolate, linearly, percentiles of heights and masses of father and mother using upper bound of age (20 years), for which the anthropometric data were available. These tables contained heights and masses corresponding to 0.01th, 0.1th, 1st, 99th, 99.9th and 99.99th percentiles, in addition to values given in CDC Growth Tables (Kamal and Jamil, 2014).

Parents’ Obesity Roadmaps: Father (Mother) was advised to put on mass (weight) corresponding to the difference obtained by subtracting net mass from optimal mass, if the value of former was lesser than that of later (weight in pounds and ounces) was obtained using the relations: 1 kg = 2.205 lb; 1 lb = 16 oz). In case, value of net mass was greater than optimal mass, father was suggested to lose mass corresponding to that difference, provided the value is under-10 kg, otherwise he should shed off 10 kg within the next 6 months. For mothers (married at the time of check up or divorced/widowed in the near past), the recommendation to lose mass was computed by adding 5 kg to gross mass, to take care of possible pregnancy and the associated fetal mass. For males and females below or equal to the age of 30 years, mass corresponding to their height percentile was considered as optimal mass. For parents older than this age limit, the reference was BMI (body-mass index). To compute optimal mass, square of height was multiplied with the ideal BMI value (24 kg/m²). Month-wise recommendations were generated for each parent.

Children’s Growth-and-Obesity Profiles: ‘Linear interpolation’ was used to determine percentiles of target height (adult-mid-parental height) for son or daughter from age-20-height values. Adult-Army-cutoff-height values (5 ft 4 in for males; 5 ft 2 in for females), applicable for induction into the Pakistani military and paramilitary services, were converted into cm (1 ft = 12 in; 1 in = 2.54 cm) and respective percentiles computed using ‘linear interpolation’ (extended table was needed to compute percentile for males, as the value fell below 3rd percentile). Tables 2a, b give target and adult-army-cutoff heights for S. and J. Families, respectively, the eldest sibling of the first family representing ‘a wasted child’ and that of the second family ‘an obese child’. Child’s height (mass) percentile was evaluated by the technique of ‘box interpolation’ (Kamal et al., 2011). Estimated-adult height (mass) was computed using age-20 values. Equation (6) was used to evaluate estimated-adult BMI. Constant-age route was followed to compute optimal mass and, subsequently, determine obesity profile. A similar procedure was used to evaluate current-age-mid-parental height. To figure out whether the child was tall or stunted, the incumbent’s height was compared with gender-specific-current-age-mid-parental height. Statuses (pertaining-to-height) and (pertaining-to-mass) were computed using equations (4) and (10), along with qualitative classifications based on Figures 1 and 2.

Table 2a. Adult-mid-parental (Target) and adult-army-cutoff heights for S. Family

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Adult-Mid-Parental (Target) and Adult-Army-Cutoff Heights</th>
<th>Boy</th>
<th>Girl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPP-KHI-20110614-01</td>
<td>Father’s Height: † 172.01 cm • Mother’s Height: † 162.94 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>173.98</td>
<td>162.56</td>
<td>160.98</td>
</tr>
<tr>
<td>Height (ft-in)</td>
<td>5 ft 8.49 in</td>
<td>5 ft 4.00 in</td>
<td>5 ft 3.38 in</td>
</tr>
<tr>
<td>Percentile</td>
<td>35.68p</td>
<td>2.72p</td>
<td>36.49p</td>
</tr>
</tbody>
</table>

Table 2b. Adult-mid-parental (Target) and adult-army-cutoff heights for J. Family

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Adult-Mid-Parental (Target) and Adult-Army-Cutoff Heights</th>
<th>Boy</th>
<th>Girl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPP-KHI-20060412-01</td>
<td>Father’s Height: † 165.70 cm • Mother’s Height: † 155.73 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>167.22</td>
<td>162.56</td>
<td>154.22</td>
</tr>
<tr>
<td>Height (ft-in)</td>
<td>5 ft 5.83 in</td>
<td>5 ft 4.00 in</td>
<td>5 ft 0.72 in</td>
</tr>
<tr>
<td>Percentile</td>
<td>9.36p</td>
<td>2.72p</td>
<td>8.31p</td>
</tr>
</tbody>
</table>
Qualitative Status (pertaining-to-height), \(STATUS(h) \)

<table>
<thead>
<tr>
<th>1st-Deg Stunted</th>
<th>1st-Deg Stunted</th>
<th>1st-Deg Stunted</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.80</td>
<td>+0.69</td>
<td>+0.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month-Wise Height Management (cm/month)</th>
<th>+0.31</th>
<th>+0.27</th>
<th>+0.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month-Wise Height Management (in/month)</td>
<td>+0.31</td>
<td>+0.27</td>
<td>+0.31</td>
</tr>
</tbody>
</table>

Gross Mass (kg)	19.19	21.90	22.53
Clothing Correction (kg)	0	0	0
Net Mass, \(\mu \) (kg)	19.19	21.90	22.53
Net Weight (lb-oz)	42 lb 5.02 oz	48 lb 4.63 oz	49 lb 10.86 oz
Optimal Mass, \(\mu_{opt} \) (kg)	21.15	23.47	24.39

Optimal Mass for Reference Height at A+ (kg)	23.57	25.98	27.64
Estimated-Adult Mass (kg)	47.60	49.68	48.46
Estimated-Adult Weight (lb-oz)	104 lb 15.37 oz	109 lb 8.67 oz	106 lb 13.82 oz

| Algebric Status (pertaining-to-mass), \(STATUS_{(\mu)} \) | -9.28% | -6.68% | -7.61% |

Qualitative Status (pertaining-to-mass), \(STATUS_{(\mu)} \)

<table>
<thead>
<tr>
<th>1st-Deg Wasted</th>
<th>1st-Deg Wasted</th>
<th>1st-Deg Wasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.73</td>
<td>+0.68</td>
<td>+0.85</td>
</tr>
</tbody>
</table>

| Month-Wise Mass Management (kg/month) | +0.73 | +0.68 | +0.85 |
| Nutritional Status | Under-Nutrition | Under-Nutrition | Under-Nutrition |

Children’s Growth-and-Obesity Roadmaps:

To construct ‘Growth-and-Obesity Roadmaps’ of boys or girls (Table 3a lists ‘Growth-and-Obesity Roadmap’ for a wasted child, salient feature of which is month-wise recommen-
Table 3b. Growth-and-Obesity Roadmap of Z. J. — Eldest sibling of J. Family, exhibiting obesity

Gender: Female • Date of Birth: 1996-09-23 • School: Withheld • GR Number: Withheld

<table>
<thead>
<tr>
<th>Case Number</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPP-KHI-20060412-01/01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photograph

Scanned Signatures

Class and Section
Withheld

Date of Checkup
2007-05-13

Age (year-month-day)
10-07-20

Age (decimal years)
10.63

Dress Code
0/0.5

Behavior Code
0

Cumulative-Scoliosis-Risk Weightage
0.50

Height, h (cm)
136.41

Height (ft-in)
4 ft 5.71 in

Percentile-of-Height, P(h)
23.18P

Current-Age-Army-Cutoff Height, hCA-AC (cm)
135.42

ΔhAC(cm) = h – hCA-AC
+0.99

Current-Age-Mid-Parental Height, hCA-MP (cm)
131.88

ΔhMP (cm) = h – hCA-MP
+4.53

Reference Height (cm)
136.41

Percentile-of-Reference-Height
23.18P

Age of Prediction, A+ (years)
11.14

Reference Height at A+ (cm)
139.52

Estimated-Adult Height (cm)
158.49

Estimated-Adult Height (ft-in)
5 ft 2.40 in

Algebraic Status (pertaining-to-height), STATUSA(h)
+3.43%

6-Month-Height Management (cm)
+3.11

Month-Wise Height Management (cm/month)
+0.52

Month-Wise Height Management (in/month)
+0.20

Gross Mass (kg)
42.50

Clothing Correction (kg)
0

Net Mass, µ (kg)
42.50

Net Weight (lb-oz)
93 lb 11.40 oz

Percentile-of-Net-Mass, P(µ)
78.36P

Optimal Mass, µopt(kg)
30.94

Δµopt(kg) = µ – µopt
+11.56

Optimal Mass for Reference Height at A+ (kg)
32.83

Estimated-Adult Mass (kg)
67.98

Estimated-Adult Weight (lb-oz)
149 lb 14.41 oz

Algebraic Status (pertaining-to-mass), STATUSA(µ)
+37.35%

6-Month-Mass Management (kg)
-9.67

Month-Wise Mass Management (kg/month)
-1.61

Month-Wise Weight Management (lb-oz/month)
-3 lb 8.80 oz

BMI: Body-Mass Index (kg/m²)
22.84

Estimated-Adult BMI (kg/m²)
27.07

Nutritional Status
Over-Nutrition

dation to gain mass; Table 3b shows ‘Growth-and-Obesity Roadmap’ for an obese child, with month-wise recommendation to lose mass, generalizations of ‘Growth-and-Obesity-Moving Profiles’, which were introduced.
through KJR model, described in the last section, one needed more than one profile — each profile represented a checkup (Kamal et al., 2013c; 2014a). The maximum value from members (elements) of the following set, as given in (11)

\[
\{h, h_{MP-CA}, h_{AC-CA}\}
\]

(first member of this set is the measured height, second one is the current-age-mid-parental height and third one the current-age-army-cutoff height) gave the reference height. Optimal mass, after 6 months, was computed based on the estimated-reference height (6 month ahead in time scale). Recommendations to pick up height and gain or reduce mass (weight) were generated from the last profile. Difference of measured mass (current value) and optimal mass (after 6 months) was considered as guideline to set short-term goals to gain (lose) mass within the next 6 months, if the value was negative (positive). Month-wise recommendations to gain height or acquire (reduce) mass were prepared, taking care of the principle that a child should not be required to lose more than 10 kg within the next 6 months, in order to avoid any adverse health effects from a rapid loss of mass.

A more efficient way is to deal with percentiles of height instead of the actual values. One of the advantages of this approach is that during subsequent profile generation, only percentile of current height needs to be computed, as gender-specific-army-cutoff-height percentile remains unchanged for a given country, say Pakistan (for males its value comes out to 2.718014592103645… and for females 19.35609323536863…), and gender-specific-MP-height percentile does not change for a given family. Further, it is the maximum of 3 percentiles that is needed to compute height 6-month down the road, not the actual height. To determine percentile of reference height, \(P_{ref}\), select the larger value from the pair of percentiles consisting of percentile of current height, \(P(h)\), and maximum of gender-specific-army-cutoff-height percentile, \(P_{AC}\), as well as gender-specific-MP-height percentile, \(P_{MP}\). Equations (12a, b) explain this procedure

\[
(12a) \quad P_{max} = \max(P_{AC}, P_{MP})
\]

\[
(12b) \quad P_{ref} = \max(P(h), P_{max})
\]

Validation

Children’s Growth-and-Obesity Roadmaps were validated by predicting heights and masses on the day of second and subsequent checkups based on values of current and previous checkups. The predicted heights (masses) were compared using the formula:

\[
\% \text{ matching} = 100 \left(1 - \frac{|\text{Predicted} - \text{Actual}|}{|\text{Actual}|}\right)
\]

Software Development

Growth-and-Obesity-Roadmap Software (SOFTWARE) was developed and tested to generate reports for the students of a local school, participating in the study.

Salient Features: The tool used was Microsoft Visual Studio (Visual Basic Dot Net 2008) and reports are saved in both word and excel files.

a) Input data could be entered manually or read through word/excel file.
b) Data were validated (no undefined or out-of-bound values).
c) Age was calculated and interval identified, \(A \geq 30, 20 \leq A < 30, A < 20\). \(A\) represented age in years.
d) If \(A \geq 30\), optimal mass was calculated using standard BMI \((i.e., 24 \text{ kg/m}^2)\).
e) If \(20 \leq A < 30\), Obesity Profile was generated by using linear interpolation.
f) If \(A < 20\), check was performed as to whether parental height was available or not. If the answer was in the affirmative, Growth-and-Obesity Profile was generated. Else, only Obesity Profile was generated. Both of these profiles were generated by using box interpolation, which included quantitative and qualitative statuses.
g) Height and mass (weight) were predicted 6 months down the road (or any other date) based on reference height.
h) Month-wise recommendations generated to gain height and put on/lose mass (weight) for children.
i) Detailed-report preparation in word as well as excel file.
Diet and Exercise Plans

These month-wise targets could be achieved by a suitable combination of diet, exercise and lifestyle adjustment (Kamal et al., 2014b, 2014; Kamal and Khan, 2014). To increase height, the child’s diet should be high in calcium and protein as well as fiber. Stunted children should do light-stretching exercises, wearing minimal clothing, in a park after sun has just come out. Such children may, also, be encouraged to exercise during TV-watching. In addition, parents should increase their sleep-duration to 9 hours or more (Kamal et al., 2013b). To gain weight, a person’s diet should include potato items as well as food with high-protein content. Such individuals should avoid food, which is rich in fiber. Their exercise routine should consist of heavy exercises. These exercises should be done consistently. However, their duration should be short during a typical day. To lose weight, a child should consume salad and yogurt. Obese child’s routine for exercise should consist of light exercises, which should be done consistently. However, their duration should be long during a typical day (Kamal et al., 2013d). One must realize that all diet-based interventions, for height and weight management, would be ineffective, if the child is suffering from vitamin-D deficiency (Kamal et al., 2013a).

CONCLUSION AND FUTURE DIRECTIONS

Proper weight-for-height is the basis of lifelong physical, mental, emotional as well as social fitness (Kamal and Khan, 2013). In this work the authors have taken up the problem of optimal height and weight management in children. Since a child is growing, a proper recommendation to gain or lose weight cannot be made unless the growth pattern of child is modeled and optimal mass at a future date is determined on the basis of desired height on that date. The key contributions of this research are:

- Month-wise recommendations to gain height and put on/lose mass (weight)
- Statuses, pertaining-to-height and -mass, defined as (negative, zero and positive) real numbers, removing absolute values from the formulae, to make these quantities suitable for mathematical/statistical processing
- Qualitative statuses, pertaining-to-height and pertaining-to-mass defined by adding appropriate adjective (1st to 4th degree) to stunted/tall and wasted/obese
- Statuses, pertaining-to-height and pertaining-to-mass, shown in coordinate-system representation — over-nutrition (tallness + obesity) in 1st quadrant; energy-channelization (tallness + wasting) in 2nd quadrant; under-nutrition (stunting + wasting) in 3rd quadrant; energy-channelization (stunting + obesity) in 4th quadrant
- **BMI**-based definition of optimal mass for individual older than 30 years

Future work needs to focus on developing the Pakistani Growth Charts based on standardized anthropometric protocols and proper statistical design (Kamal et al., 2013), preferably preparing charts for different somatotypes — ectomorph, mesomorph and endomorph. Some preliminary work in this direction has, already, been initiated (Aziz et al., 2012; Kamal and Jamil, 2014; Mushtaq et al., 2012). Another important development could be extension of this model to generate Growth-and-Obesity Roadmaps of still-growing parents by extending the method presented earlier (Kamal and Jamil, 2012).

The method proposed and the associated software may assist pediatricians, nutritionists, sport coaches and community-health professionals, involved in the health-protection and the well-being of children, to plan efficient and effective intervention strategies so that stunting, wasting and obesity may be prevented in the next generation of Pakistan, if combined with an approach to change community beliefs and attitude as well as create awareness about child obesity (Aslam et al., 2013) based on facts instead of myths and assumptions (Casazza et al., 2013).

ENDNOTES

*a*The terminologies underweight and overweight replaced by wasted and obese with appropriate adjectives

*b*Estimated-adult height, $h_{\text{est-adult}}$, is the height at the age of 20 years corresponding to percentile of current height, computed using the technique of linear interpolation. Similar definition holds for estimated-adult mass, $\mu_{\text{est-adult}}$.

3. For adults older than 30 years, age-20 values of height and mass read from extended-gender-specific tables may be misleading for the purpose of computing percentiles. The weight distribution changes, significantly, as years are added up to age of an individual. Hence, it is not recommended to evaluate such percentiles, as they are not needed to generate Obesity Profiles.
4. All dates are given in the format YYYY-MM-DD (year-month-day).
Photographs and scanned signatures on the day, check up was conducted. In order to protect the privacy of S. and J. Families, the photographs, inserted in these Growth-and-Obesity Roadmaps, do not show the actual children, although they are from the set of patients, who reported to SF Growth-and-Imaging Laboratory for checkups.

Ages are given in both formats: fractional years and YY-MM-DD (year-month-day).

Behavior code is explained in (Kamal, 2006).

Cumulative-Scoliosis-Risk Weightage (CSRW) is described in (Kamal et al., 2013c).

REFERENCES

Lee, H., K. M. Harris and J. Lee (2013). Multiple levels of social disadvantage and links to obesity in adolescence and young adulthood. Journal of School Health, 83 (3): 139-149

(Accepted for Publication: October 2014)

Web address of this document (on first author’s homepage): https://www.ngds-ku.org/Papers/J35.pdf
Abstract: https://www.ngds-ku.org/pub/jourabstB.htm#J35: